lunes, 23 de abril de 2007

Teorias de la LuZ


Teoría corpuscular
Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul; concluye que la luz blanca o natural está compuesta por todos lo colores del arco iris.
Isaac Newton propuso una teoría corpuscular para la luz, en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpúsculos o partículas luminosas, los cuales se propagan en línea recta, que pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la
refracción y la reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens, y tampoco los fenómenos de interferencia y difracción.

Teoría ondulatoria



Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).
Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre tránsito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)

Naturaleza cuántica de la luz


Sin embargo, la teoría electromagnética clásica no podía explicar la emisión de electrones por un conductor cuando incide luz sobre su superficie, fenómeno conocido como efecto fotoeléctrico.
Este efecto consiste en la emisión espontánea de
electrones (o la generación de una diferencia de potencial eléctrico) en algunos sólidos (metálicos o semiconductores) irradiados por luz. Fue descubierto y descrito experimentalmente por Heinrich Hertz en 1887 y suponía un importante desafío a la teoría electromagnética de la luz. En 1905, el joven físico Albert Einstein presentó una explicación del efecto fotoeléctrico basándose en una idea propuesta anteriormente por Planck para la emisión espontánea de radiación lumínica por cuerpos cálidos y postuló que la energía de un haz luminoso se hallaba concentrada en pequeños paquetes, que denominó cuantos de energía y que en el caso de la luz se denominan fotones. El mecanismo del efecto fotoeléctrico consistiría en la transferencia de energía de un fotón a un electrón. Cada fotón tiene una energía proporcional a la frecuencia de vibración del campo electromagnético que lo conforma. Posteriormente, los experimentos de Millikan demostraron que la energía cinética de los fotoelectrones coincidía exactamente con la dada por la fórmula de Einstein.










lunes, 2 de abril de 2007

sobre la termodinamica

TareaEnuncie la Ley Cero de la TermodinámicaExprese los 2 enunciados principales que definen a la Segunda Ley de la TermodinámicaComente qué se entiende por muerte térmica del UniversoExplique que es un proceso adiabático y uno no adiabáticoDescriba el concepto de energía interna de un sistemaCite 3 fuentes de energía térmica y cuáles son las ventajas que presentan el uso de cada una de ellas.

Principio Cero de la Termodinámica
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda


El Principio Cero de la Termodinámica establece que si un sistema A está en equilibrio térmico con otro sistema B, y este sistema B está en equilibrio térmico con otro sistema C, entonces los sistemas A y C están en equilibrio térmico.
Permite construir instrumentos para poder medir la temperatura de un sistema.
http://es.wikipedia.org/wiki/Principio_Cero_de_la_Termodin%C3%A1mica



2 ENUNCIADOS DE LA 2 LEY DE LA TERMODINAMICA
Enunciados de Clausius y Carnot
Enunciado de Carnot
Nicolas Léonard Sadi Carnot en 1824 propuso: La potencia motriz del calor es independiente de los agentes que intervienen para realizarla; su cantidad se fija únicamente por la temperatura de los cuerpos entre los que se hace, en definitiva, el transporte calórico.
Enunciado de Clausius


Diagrama del ciclo de Carnot en función de la presión y el volumen.
En palabras de Sears es: " No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".
Ambos enunciados son equivalentes y expresan una misma ley de la naturaleza. "La energía no se crea ni se destruye solo se transforma".
Donde:
, rendimiento del ciclo de Carnot., temperaturas de la fuente fría (c) y caliente (h)., rendimiento máximo.

http://es.wikipedia.org/wiki/Termodin%C3%A1mica


MUERTE TERMICA DEL UNIVERSO

El caso de muerte térmica del universo, se produciría en un hipotético caso de que este continuara expandiéndose indefinidamente. El big crunch es un fenomeno completamente gravitatorio y si hubiera big crunch no daría tiempo a que el universo se enfriara térmicamente. Una advertencia, el universo solo se enfría por que se expande, no tiene nada a lo que ceder calor, puesto que el universo en si es un sistema adiabaticamente aislado, por ello, sólo un universo abierto (en expansión por siempre) sufriría la muerte térmica. Un universo con big crunch, cuando comenzara a contraerse, comenzaría a calentarse. En cuanto la universalidad de la 2ª ley de la tdca os diré que es una de las leyes más fiables de todas las que hay en la física.



http://100cia.com/opinion/foros/showthread.php?t=40



PROCESO ADIABATICO Y NO ADIABATICO



Proceso adiabático: es en el cual el sistema no gana ni pierde calor. Por ejemplo un sistema perfectamente aislado o bien realizando la transformación rápidamente, el flujo de calor es lo suficientemente lento para que cualquier proceso suficientemente rápido pueda considerarse como adiabático. También se considera que es el proceso en el cual no existe ninguna transferencia de calor del sistema con el medio exterior. Por lo que para un proceso adiabático:
El proceso no adiabático es la diferencia U-W es no nula con lo que llamamos calor Q a esta diferencia
U-W=Q



http://personal.redestb.es/juan_villa/primer%20principio%20(t).pdf


ENERGIA INTERNA DE UN SISTEMA

La energía interna de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.

Las fuentes de energía las podemos separa en:
Fuentes renovables, son las que la naturaleza las renueva con rapidez, y podemos obtener energía de forma continua.
Fuentes no renovables, son las que se encuentran en la Tierra y se agotan con su utilización, porque las cantidades son limitadas.
Fuentes convencionales, son las que producen la mayor cantidad de energía útil de un país.